Mathematics Methods 3 and 4

Test 2 Calculator Free

Name:

SHENTON COLLEGE Teacher: Mrs Martin Dr Moore Mr Smith

Time Allowed : 30 minutes

Marks /30

Materials allowed: Formulae Sheet provided. *Attempt all questions. All necessary working and reasoning must be shown for full marks. Marks may not be awarded for untidy or poorly arranged work.*

Question 1 [4, 2, 2 = 8 marks]

Determine the following:

(a)
$$\int \left(e^{2x} + \sqrt{x} + \pi\right) dx$$
 (b) $\frac{d}{dx} \int_{x}^{3} \frac{t^{2}}{4} dt$ (c) $\frac{d}{dx} \int_{0}^{x^{2}} \sqrt{1 + t^{2}} dt$

Question 2 [3, 4 = 7 marks]

Evaluate

(a)
$$\int_{0}^{2} \frac{3}{(2x+1)^{4}} dx$$
 (b) $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} 2\sin 2x dx$

Question 3 [1, 3 = 4 marks]

Given
$$\int_{0}^{-3} f(x)dx = 1$$
 and $\int_{0}^{2} f(x)dx = -5$, find
(a) $\int_{-3}^{2} f(x)dx$ (b) $\int_{0}^{2} [3f(x) - 4]dx$

Question 4 [5 marks]

Given $\frac{dy}{dx} = ae^x + 1$ and when x = 1, $\frac{dy}{dx} = 3$ and y = 2Find the value of y when x = 0.

Question 5 [1, 1, 2, 2 = 6 marks]

Given
$$h(x) = \int_{0}^{x} \cos(2t) dt$$
, determine
a) $h'(x)$ b) $h'\left(\frac{\pi}{2}\right)$

c)
$$h\left(\frac{\pi}{2}\right)$$

d) the equation of the tangent to the curve h(x) at $x = \frac{\pi}{2}$

Mathematics Methods 3 and 4

Test 2 Calculator Assumed

Name:

SHENTON COLLEGE Teacher: Mrs Martin Dr Moore Mr Smith

Time Allowed: 20 minutes

Marks /27

Materials allowed: Formulae Sheet provided. Classpad, calculators, 1 A4 page of notes, one side. *Attempt all questions. All necessary working and reasoning must be shown for full marks. Marks may not be awarded for untidy or poorly arranged work.*

Question 1 [2, 2, 2, 2 = 8 marks]

The acceleration (m/s^2) of a particle moving in a straight line is given by a = 2t - 4. The particle's initial velocity is 3 m/s. Its initial displacement from the origin is -15 m.

- (a) Find the expression for the particle's velocity at any time.
- (b) Find the time(s), if any, when the particle comes to rest.

(c) Find its displacement when t = 3

(d) Find the distance travelled in the first 3 seconds.

Question 2 [3, 6 = 9 marks]

Consider the functions: f(x) = x(5-x) and g(x) = x(x-3)

(a) Write down an integral which when evaluated will determine the area trapped between the two functions and calculate the area.

- (b) Within the area trapped between the two functions a vertical line is drawn, intersecting f(x) at Point P and intersecting g(x) at Point Q.
 - (i) Show use of calculus to find the value of x for which the length of line segment PQ is a maximum.

(ii) Use the second derivative test to show that this value of x does indeed produce a maximum value.

(iii) State the maximum length possible.

Question 3

The ratio of the radius (r) to the height (h) is 5:3 for a specific cone.

(a) Show that the volume of the cone is given by $V = \frac{25\pi h^3}{27}$

(b) Use the method of small change to find the approximate increase in the volume of the cone if the height changes from 5 cm to 5.02 cm.

Question 4

[2, 3 = 5 marks]

The cost, C(x) (\$1000s) of manufacturing a product is given by C(x) = 45 + 65x. The revenue, R(x), is given by the function $R(x) = 100x - 2.5x^2$. The manufacturer can only make between 2 and 10 products per week.

Find

(a) a simplified expression for the Profit if x units are made and sold.

(b) the minimum and maximum profit possible each week.